A CALL FOR CONSTANT MONITORING OF WIND TURBINES

Subscribe for the latest industry news, technologies and resources.

We care about your data in our privacy policy.

A dynamic system needs monitoring.  The reality is that gaseous systems are checked for contents annually because they are pressurised and anything that is dynamic offers risk of loss of contents, but this fails to deal with the probability of discharge or leakage for the 364 days per annum in the interim between certification checks.

If the hazard is special and the infrastructure critical then this is the case for the constant monitoring of the suppression systems that aim to deliver the protection of them. Inspection should include an evaluation that the extinguishing system continues to provide adequate protection for the risk.
Coupled to this is a complete lack Room Integrity testing after the gaseous system has been installed. As buildings age or their internal use is changed leak sites develop. If the gas cannot be ‘held’ in the room on discharge during a fire event the probability of its suppression diminishes in direct proportion to the size of the leak sites.  Room integrity tests are imperative for the determination of both the hold time and the peak pressure needed for successful fire suppression.

The level of leakage is carefully monitored in order to ensure the correct agent concentration is achieved; room integrity must be ‘tight’ enough to ensure sufficient retention time according to NFPA Standards or ISO 14520, yet remain ‘loose’ enough to prevent enclosure damage at discharge.  The presence of undesired and unregulated leak sites reduces room integrity and will hence dramatically impact the hold time and peak pressure, placing room contents and potentially wall structures at risk.

It is accepted that in wind turbines vibration can loosen connections while dirt, dust, and temperature extremes are known to cause unwarranted discharge. Additionally, openings in the turbine housing significantly inhibit achieving the designated agent concentration. Devising a solution to overcome these challenges can add significantly to the weight in the turbine.

For regular inspection, there are solutions such as the Portalevel® MAX. This handheld ultrasonic liquid level indicator can service a cylinder in 30 seconds (in contrast to 15 minutes by traditional manual weighing) with accuracy of up to 1.5mm off the true liquid level.

Coltraco Ultrasonics provide smart Firetest® solutions that enable wind turbine owners and operators to improve their fire safety management and reduce the risks to human life, business continuity caused by any downtime and thus minimise risk to reputation by delivering a Safesite®.

Get in touch

You can reach us anytime via phone or email, we aim to respond to all enquiries within 24 hours (excluding weekends and bank holidays)

Office

Come say hello at our Technical Laboratory.

Coltraco Ultrasonics
NETPark Research Institute
Joseph Swan Road
Sedgefield
TS21 3FB

United Kingdom

Phone

Monday - Friday (excluding bank holidays) from 8:30am to 6:00pm, UK.

Tel (Sales & HQ): +44 20 7629 8475
Tel (Technical): +44 1740 618 240